
18th Australasian Fluid Mechanics Conference 
Launceston, Australia 
3-7 December 2012 

 
Fluid-Structure Interaction and Vortex Identification 

 
J. Šístek1,2, V. Kolář3, F. Cirak4 and P. Moses2 

1Institute of Mathematics, Academy of Sciences of the Czech Republic 
CZ-11567 Prague 1, Czech Republic 

2Department of Mathematics, Faculty of Mechanical Engineering, Czech Technical University in Prague 
CZ-12135 Prague 2, Czech Republic 

3Institute of Hydrodynamics, Academy of Sciences of the Czech Republic 
CZ-16612 Prague 6, Czech Republic 

4Department of Engineering, University of Cambridge 
Cambridge CB2 1PZ, United Kingdom 

 
Abstract 

Fluid-structure interaction is often associated with 3D large-scale 
vortical structures in the wake and a near-wake region which is 
strongly affected by the mean-flow shear. The present paper 
concentrates on the performance of vortex-identification schemes 
in the near-wake region of an inclined flat plate. Two widely 
used methods, the Q-criterion and λ2-criterion, are compared with 
the triple-decomposition method (TDM) based on the extraction 
of a local shearing motion near a point. The following conclusion 
is drawn: to capture the vortical structures in the wake, both the 
Q-criterion and λ2-criterion cannot—unlike TDM—avoid the bias 
in showing shearing zones, formed in the close proximity of the 
plate edges, as vortex regions. 

Introduction  

Many engineering applications represent internal or external 
fluid-structure interactions, including flows around bluff bodies. 
The resulting bluff-body wakes are usually characterized by 3D 
large-scale vortical structures in the near-wake region to be 
examined using different vortex-identification methods. 

A direct comparison of two widely used vortex-identification 
methods, the Q-criterion [1] and λ2-criterion [2], with the recently 
proposed triple-decomposition method (TDM) [3] is carried out 
for the vortex structure of a near-wake region of an inclined flat 
plate [4-8]. The latter method is based on the extraction of a local 
shearing motion. 

The examined data sets describe the impulsively started 
incompressible flow around a flat plate (aspect ratio 2) at an 
angle of attack of 30°, Reynolds numbers Re=300 and 1200. 
Time instants with significant vortex structures suitable for this 
study were chosen from the unsteady simulation (after the plate 
travelled 8 and 14 chord lengths for Re=300 and 1200, 
respectively). This represents a model problem for fluid-structure 
interaction of an insect wing flapping at a high angle of attack, 
although the plate is considered rigid in the presented 
computation. Finite element method using unstructured mesh 
with 2.5M Taylor-Hood elements and 21M nodes was used to 
obtain the results in this paper. 

There is a number of papers describing the flow around a flat 
plate at different Re and different incidence angles, e.g. [4-7] and 
a short review in [8]. Quite similar flow conditions as in the 
present paper (angle of attack 30°, Re=300, and aspect ratio of 2) 
have been assumed by Taira et al. [6, 7] showing a similar near-
wake vortex structure as described here for the impulsively 
started flow around a flat plate. A common feature of the given 

flat-plate bluff-body wake close to the plate is (i) formation of 
separated (free) shear layers, namely leading-edge and trailing-
edge "vortex sheets" which soon roll up to generate (ii) near-
wake vortices. The pressure difference associated with lift 
generates around the plate tips of both sides (iii) characteristic 
wingtip vortices, that is long columnar vortices which are able to 
persist far downstream. These vortices may become particularly 
important in aerospace engineering studies dealing with different 
types of wingtips and wake vortex interactions. 

The well-resolved separated thin shear layer originating from the 
leading edge of a plate, is sometimes labelled and interpreted as 
the so-called "vortex sheet". However, from the fluid-mechanical 
viewpoint, it is different quality than that of actual large-scale 
swirling motion of a typical tube-like vortex reached afterwards 
by rolling up of the shear layer due to Kelvin-Helmholtz 
instability. The response of two standard vortex-identification 
methods (Q, λ2, see Appendix) towards the two different flow 
situations is to be examined and compared with the performance 
of the method TDM [3] (Appendix). The method aims at 
removing the biasing effect of a local shear, and this positive 
aspect of the TDM has been recently discussed in [9] on the 
background of other criteria. 

Vortex Identification in the wake of an inclined flat plate 

The vortex-identification results are summarized in Figures 1-4. 
Figures 1-2 deal with the flow at Re=300 and Figures 3-4 with 
the flow at Re=1200. The relative threshold levels (with respect 
to the maximum value within the examined domain) employed 
are very low, for the Q-criterion and λ2-criterion are well below 
one percent and about three percent for the TDM residual 
vorticity. Apparently, the obtained vortex-identification results 
for the Q-criterion are quite close to those for the λ2-method. 

From Figures 1 and 3 it follows directly that an effort to capture 
the streamwise vortical structures in the wake downstream in a 
comparable manner with the residual vorticity of the TDM, both 
the Q-criterion and λ2-criterion cannot—unlike TDM—avoid the 
bias in showing shearing zones, formed in the close proximity of 
the plate edges, as vortex regions. By taking a higher threshold 
value to diminish the shearing zones, the relevant streamwise 
vortices disappear completely as shown in Figures 2 and 4. This 
observation similarly holds for both Reynolds numbers under 
consideration. 

The contour lines of vorticity component for the plate-symmetry 
plane, parallel with the coordinate plane x-y, are depicted 
including the identification results based on the TDM (colour) in 
Figure 5.
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Figure 1. Results for the flow around a flat plate at Re=300 revealing a shearing bias of the λ2-criterion and Q-criterion near the plate edges.  
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Figure 2. An attempt to diminish a shearing bias of the λ2-criterion and Q-criterion near the plate edges by taking a higher threshold value (Re=300). 
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Figure 3. Results for the flow around a flat plate at Re=1200 revealing a shearing bias of the λ2-criterion and Q-criterion near the plate edges. 
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Figure 4. An attempt to diminish a shearing bias of the λ2-criterion and Q-criterion near the plate edges by taking a higher threshold value (Re=1200). 



 

 
 

Figure 5. Vorticity (z-component) contour lines and vortex identification results (colour) 

using the magnitude of the TDM residual vorticity in the plane of a plate symmetry. 

 

Discussion 

Some previous applications of vortex-identification criteria to 
plate wake flows are as follows: the λci (swirling-strength) 
criterion [10], based on the previous Δ-criterion [11], was 
employed in [4], and the Q-criterion was used in [6, 7]. It should 
be noted that the two criteria, Δ and  λci, are equivalent just (and 
only) for zero thresholds and that generally the Q-criterion is 
more restrictive than Δ-criterion. In the above mentioned 
applications [4, 6, 7], both criteria, λci and Q, interpret free shear 
layers behind the plate edges as vortex regions. 

The nature of separated (free) shear layers depends 
predominantly on the Reynolds number. At higher Reynolds 
numbers the so-called "shear-layer vortices", developing in the 
free shear layers located between the separation point and the 
first shed Strouhal vortex, may occur in the bluff-body near wake 
as discussed for a circular cylinder in [12]. These small-scale 
vortices develop due to the shear-layer Kelvin-Helmholtz 
instability and merge into the Strouhal vortices. The transitional 
region associated with the onset of shear-layer vortices was 
roughly estimated for a circular cylinder [12] in the Reynolds 
number range 1000-3000. 

In the present case of an inclined flat-plate wake the Reynolds 
number was low and the developed shear layers were relatively 
short before rolling up into large-scale tube-like vortices (cf. 
Figures 1-5). Therefore, the interesting structural phenomenon of 
shear layer-vortices was not indicated and hence not taken into 
further considerations. 

The observed bias of the two vortex-identification methods 
towards local shearing could be—very loosely said—, at least 
partially, attributed to a complex non-linear nature of the 
dependence of the vortex-identification criterial quantity on 
(total) vorticity which can absorb shearing effects "in a boundless 
manner". The latter fact represents an inherent property of 
vorticity. On the other hand, the TDM method somehow defines 

the local shear and directly removes it. However, all three 
methods remain local pointwise schemes unlike the examined 
non-local phenomenon of a vortex. 

Conclusions 

Three vortex-identification schemes (Q, λ2, and TDM) have been 
applied to the near-wake region of an inclined flat plate. Their 
results have been compared by applying very low threshold 
values. The performance of two widely used methods, the Q-
criterion and λ2-criterion, indicates that these schemes are—in the 
close proximity of the plate edges—relatively shear-biased in 
comparison with the TDM which performs better in removing the 
biasing effect of a local shear. 
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Appendix 

Q-criterion [1]: Vortices of an incompressible flow are identified 
as connected fluid regions with a positive second invariant of the 
velocity-gradient tensor u∇ , , S is the strain-rate 
tensor, Ω is the vorticity tensor (in tensor notation below the 
subscript comma denotes differentiation), 

ΩSu +=∇
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This is fulfilled in the regions where the vorticity magnitude 
prevails over the strain-rate magnitude. 



λ2-criterion [2]: This criterion is formulated on dynamic 
considerations, namely on the search for a pressure minimum 
across the vortex. The quantity  is employed as an 
approximation of the pressure Hessian after removing the 
unsteady irrotational straining and viscous effects from the strain-
rate transport equation for incompressible fluids. A vortex region 
is defined as a connected fluid region with two negative 
eigenvalues of , that is, if the eigenvalues are ordered, 

, by the condition . 
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Triple-decomposition method (TDM) [3]: The TDM is expressed 
through the corresponding triple decomposition of a local motion. 
As a result,  consists, unlike the double decomposition 

, of three parts so that the strain-rate tensor S and 
vorticity tensor Ω are cut down in magnitudes to "share" their 
portions through the third term  associated with a local 
shearing motion. In terms of the residual parts of S and Ω it reads  

u∇
ΩSu +=∇

( )SHu∇

         ( )SHRESRES uΩSu ∇++=∇  .        (A.2) 
 
The first term on the RHS of (A.2) stands for an irrotational 
straining, the second one represents a rigid-body rotation. The 
third term of the triple decomposition denoted as (  and 
representing a shearing motion is described by a "purely 
asymmetric tensor" fulfilling in a suitable reference frame (the 
subscript comma denotes differentiation) 

)SHu∇

 
                         (for all i, j).        (A.3) 00 == ijji uORu ,,

 
From the viewpoint of the double decomposition, ΩSu +=∇ , 
the term  itself is responsible for a specific portion of ( )SHu∇
vorticity labelled "shear vorticity" and for a specific portion of 
strain rate labelled "shear strain rate" while the remaining 
portions of S and Ω are labelled "residual strain rate" and 
"residual vorticity". 
 
The TDM is closely associated with the so-called "basic 
reference frame" (BRF) where it is performed. The TDM results 
generated (i.e. separated) in the BRF are valid for all other frames 
rotated (not rotating) with respect to the BRF under an 
orthogonal transformation. In the BRF, (i) an effective shearing 
motion is shown "in a clearly visible manner" described by the 
tensor form (A.3) under the definition condition that (ii) the 
effect of extraction of a "shear tensor" is maximized within the 
following decomposition scheme applicable to an arbitrary 
reference frame 
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where the residual tensor is defined as 
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The following notation is used in (A.4) and (A.5): u, v, w are 
velocity components, subscripts x, y, z stand for partial 
derivatives. The remaining non-specified pairs of off-diagonal 
elements of the residual tensor in (A.5) are constructed 
analogously as the specified one, each pair—if considered 

separately—being either symmetric or antisymmetric. The effect 
of extraction of the shear tensor is maximized by changing the 
reference frame under an orthogonal transformation so that the 
absolute tensor value of the residual tensor is minimized, or the 
closely related scalar quantity 313123231212 ΩSΩSΩS ++  is 
maximized, as shown in [3]. This extremal condition guarantees 
that an effective shearing motion is recognized in the BRF as a 
third elementary part of the triple decomposition and can be 
extracted from u∇  following (A.4) and (A.5). For details and 
the qualitative description of the flow kinematics near a point 
adopted in the TDM, see [3]. 

The residual vorticity tensor  representing a rigid-body 
rotation is assumed to provide an "unbiased shear-free measure" 
of the actual swirling motion of a vortex. The magnitude of the 
residual vorticity is therefore employed in the TDM-based vortex 
identification as shown in the present contribution and in [13]. 
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